Union y Agregaciones
In [1]:
Copied!
import sys
print(sys.executable)
import sys
print(sys.executable)
/usr/bin/python3
In [2]:
Copied!
from pyspark.sql import SparkSession
spark = (
SparkSession
.builder
.appName("Sort Union & Aggregation")
.master("local[*]")
.getOrCreate()
)
from pyspark.sql import SparkSession
spark = (
SparkSession
.builder
.appName("Sort Union & Aggregation")
.master("local[*]")
.getOrCreate()
)
Setting default log level to "WARN". To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use setLogLevel(newLevel). 25/02/15 12:38:30 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
In [3]:
Copied!
spark
spark
Out[3]:
SparkSession - in-memory
In [4]:
Copied!
# Emp Data & Schema
emp_data_1 = [
["001","101","John Doe","30","Male","50000","2015-01-01"],
["002","101","Jane Smith","25","Female","45000","2016-02-15"],
["003","102","Bob Brown","35","Male","55000","2014-05-01"],
["004","102","Alice Lee","28","Female","48000","2017-09-30"],
["005","103","Jack Chan","40","Male","60000","2013-04-01"],
["006","103","Jill Wong","32","Female","52000","2018-07-01"],
["007","101","James Johnson","42","Male","70000","2012-03-15"],
["008","102","Kate Kim","29","Female","51000","2019-10-01"],
["009","103","Tom Tan","33","Male","58000","2016-06-01"],
["010","104","Lisa Lee","27","Female","47000","2018-08-01"]
]
emp_data_2 = [
["011","104","David Park","38","Male","65000","2015-11-01"],
["012","105","Susan Chen","31","Female","54000","2017-02-15"],
["013","106","Brian Kim","45","Male","75000","2011-07-01"],
["014","107","Emily Lee","26","Female","46000","2019-01-01"],
["015","106","Michael Lee","37","Male","63000","2014-09-30"],
["016","107","Kelly Zhang","30","Female","49000","2018-04-01"],
["017","105","George Wang","34","Male","57000","2016-03-15"],
["018","104","Nancy Liu","29","","50000","2017-06-01"],
["019","103","Steven Chen","36","Male","62000","2015-08-01"],
["020","102","Grace Kim","32","Female","53000","2018-11-01"]
]
emp_schema = "employee_id string, department_id string, name string, age string, gender string, salary string, hire_date string"
# Emp Data & Schema
emp_data_1 = [
["001","101","John Doe","30","Male","50000","2015-01-01"],
["002","101","Jane Smith","25","Female","45000","2016-02-15"],
["003","102","Bob Brown","35","Male","55000","2014-05-01"],
["004","102","Alice Lee","28","Female","48000","2017-09-30"],
["005","103","Jack Chan","40","Male","60000","2013-04-01"],
["006","103","Jill Wong","32","Female","52000","2018-07-01"],
["007","101","James Johnson","42","Male","70000","2012-03-15"],
["008","102","Kate Kim","29","Female","51000","2019-10-01"],
["009","103","Tom Tan","33","Male","58000","2016-06-01"],
["010","104","Lisa Lee","27","Female","47000","2018-08-01"]
]
emp_data_2 = [
["011","104","David Park","38","Male","65000","2015-11-01"],
["012","105","Susan Chen","31","Female","54000","2017-02-15"],
["013","106","Brian Kim","45","Male","75000","2011-07-01"],
["014","107","Emily Lee","26","Female","46000","2019-01-01"],
["015","106","Michael Lee","37","Male","63000","2014-09-30"],
["016","107","Kelly Zhang","30","Female","49000","2018-04-01"],
["017","105","George Wang","34","Male","57000","2016-03-15"],
["018","104","Nancy Liu","29","","50000","2017-06-01"],
["019","103","Steven Chen","36","Male","62000","2015-08-01"],
["020","102","Grace Kim","32","Female","53000","2018-11-01"]
]
emp_schema = "employee_id string, department_id string, name string, age string, gender string, salary string, hire_date string"
In [5]:
Copied!
# Create emp DataFrame
emp_data_1 = spark.createDataFrame(data=emp_data_1, schema=emp_schema)
emp_data_2 = spark.createDataFrame(data=emp_data_2, schema=emp_schema)
# Create emp DataFrame
emp_data_1 = spark.createDataFrame(data=emp_data_1, schema=emp_schema)
emp_data_2 = spark.createDataFrame(data=emp_data_2, schema=emp_schema)
In [6]:
Copied!
# UNION and UNION ALL
# select * from emp_data_1 UNION select * from emp_data_2
emp = emp_data_1.unionAll(emp_data_2)
# UNION and UNION ALL
# select * from emp_data_1 UNION select * from emp_data_2
emp = emp_data_1.unionAll(emp_data_2)
In [7]:
Copied!
emp.show()
emp.show()
+-----------+-------------+-------------+---+------+------+----------+ |employee_id|department_id| name|age|gender|salary| hire_date| +-----------+-------------+-------------+---+------+------+----------+ | 001| 101| John Doe| 30| Male| 50000|2015-01-01| | 002| 101| Jane Smith| 25|Female| 45000|2016-02-15| | 003| 102| Bob Brown| 35| Male| 55000|2014-05-01| | 004| 102| Alice Lee| 28|Female| 48000|2017-09-30| | 005| 103| Jack Chan| 40| Male| 60000|2013-04-01| | 006| 103| Jill Wong| 32|Female| 52000|2018-07-01| | 007| 101|James Johnson| 42| Male| 70000|2012-03-15| | 008| 102| Kate Kim| 29|Female| 51000|2019-10-01| | 009| 103| Tom Tan| 33| Male| 58000|2016-06-01| | 010| 104| Lisa Lee| 27|Female| 47000|2018-08-01| | 011| 104| David Park| 38| Male| 65000|2015-11-01| | 012| 105| Susan Chen| 31|Female| 54000|2017-02-15| | 013| 106| Brian Kim| 45| Male| 75000|2011-07-01| | 014| 107| Emily Lee| 26|Female| 46000|2019-01-01| | 015| 106| Michael Lee| 37| Male| 63000|2014-09-30| | 016| 107| Kelly Zhang| 30|Female| 49000|2018-04-01| | 017| 105| George Wang| 34| Male| 57000|2016-03-15| | 018| 104| Nancy Liu| 29| | 50000|2017-06-01| | 019| 103| Steven Chen| 36| Male| 62000|2015-08-01| | 020| 102| Grace Kim| 32|Female| 53000|2018-11-01| +-----------+-------------+-------------+---+------+------+----------+
In [8]:
Copied!
# Sort the emp data based on desc Salary
# select * from emp order by salary desc
from pyspark.sql.functions import desc, asc, col
emp_sorted = emp.orderBy(col("salary").asc())
# Sort the emp data based on desc Salary
# select * from emp order by salary desc
from pyspark.sql.functions import desc, asc, col
emp_sorted = emp.orderBy(col("salary").asc())
In [9]:
Copied!
emp_sorted.show()
emp_sorted.show()
+-----------+-------------+-------------+---+------+------+----------+ |employee_id|department_id| name|age|gender|salary| hire_date| +-----------+-------------+-------------+---+------+------+----------+ | 002| 101| Jane Smith| 25|Female| 45000|2016-02-15| | 014| 107| Emily Lee| 26|Female| 46000|2019-01-01| | 010| 104| Lisa Lee| 27|Female| 47000|2018-08-01| | 004| 102| Alice Lee| 28|Female| 48000|2017-09-30| | 016| 107| Kelly Zhang| 30|Female| 49000|2018-04-01| | 001| 101| John Doe| 30| Male| 50000|2015-01-01| | 018| 104| Nancy Liu| 29| | 50000|2017-06-01| | 008| 102| Kate Kim| 29|Female| 51000|2019-10-01| | 006| 103| Jill Wong| 32|Female| 52000|2018-07-01| | 020| 102| Grace Kim| 32|Female| 53000|2018-11-01| | 012| 105| Susan Chen| 31|Female| 54000|2017-02-15| | 003| 102| Bob Brown| 35| Male| 55000|2014-05-01| | 017| 105| George Wang| 34| Male| 57000|2016-03-15| | 009| 103| Tom Tan| 33| Male| 58000|2016-06-01| | 005| 103| Jack Chan| 40| Male| 60000|2013-04-01| | 019| 103| Steven Chen| 36| Male| 62000|2015-08-01| | 015| 106| Michael Lee| 37| Male| 63000|2014-09-30| | 011| 104| David Park| 38| Male| 65000|2015-11-01| | 007| 101|James Johnson| 42| Male| 70000|2012-03-15| | 013| 106| Brian Kim| 45| Male| 75000|2011-07-01| +-----------+-------------+-------------+---+------+------+----------+
In [11]:
Copied!
from pyspark.sql.functions import sum
emp_sum = emp_sorted.groupBy("department_id").agg(sum("salary").alias("total_dept_salary"))
from pyspark.sql.functions import sum
emp_sum = emp_sorted.groupBy("department_id").agg(sum("salary").alias("total_dept_salary"))
In [12]:
Copied!
emp_sum.show()
emp_sum.show()
+-------------+-----------------+ |department_id|total_dept_salary| +-------------+-----------------+ | 101| 165000.0| | 107| 95000.0| | 104| 162000.0| | 102| 207000.0| | 103| 232000.0| | 106| 138000.0| | 105| 111000.0| +-------------+-----------------+
In [13]:
Copied!
# Aggregation with having clause
# select dept_id, avg(salary) as avg_dept_salary from emp_sorted group by dept_id having avg(salary) > 50000
from pyspark.sql.functions import avg
emp_avg = emp_sorted.groupBy("department_id").agg(avg("salary").alias("avg_dept_salary")).where("avg_dept_salary > 50000")
# Aggregation with having clause
# select dept_id, avg(salary) as avg_dept_salary from emp_sorted group by dept_id having avg(salary) > 50000
from pyspark.sql.functions import avg
emp_avg = emp_sorted.groupBy("department_id").agg(avg("salary").alias("avg_dept_salary")).where("avg_dept_salary > 50000")
In [14]:
Copied!
# Bonus TIP - unionByName
# In case the column sequence is different
emp_data_2_other = emp_data_2.select("employee_id", "salary", "department_id", "name", "hire_date", "gender", "age")
emp_data_1.printSchema()
emp_data_2_other.printSchema()
# Bonus TIP - unionByName
# In case the column sequence is different
emp_data_2_other = emp_data_2.select("employee_id", "salary", "department_id", "name", "hire_date", "gender", "age")
emp_data_1.printSchema()
emp_data_2_other.printSchema()
root |-- employee_id: string (nullable = true) |-- department_id: string (nullable = true) |-- name: string (nullable = true) |-- age: string (nullable = true) |-- gender: string (nullable = true) |-- salary: string (nullable = true) |-- hire_date: string (nullable = true) root |-- employee_id: string (nullable = true) |-- salary: string (nullable = true) |-- department_id: string (nullable = true) |-- name: string (nullable = true) |-- hire_date: string (nullable = true) |-- gender: string (nullable = true) |-- age: string (nullable = true)
In [15]:
Copied!
emp_fixed = emp_data_1.unionByName(emp_data_2_other)
emp_fixed = emp_data_1.unionByName(emp_data_2_other)
In [16]:
Copied!
emp_fixed.show()
emp_fixed.show()
+-----------+-------------+-------------+---+------+------+----------+ |employee_id|department_id| name|age|gender|salary| hire_date| +-----------+-------------+-------------+---+------+------+----------+ | 001| 101| John Doe| 30| Male| 50000|2015-01-01| | 002| 101| Jane Smith| 25|Female| 45000|2016-02-15| | 003| 102| Bob Brown| 35| Male| 55000|2014-05-01| | 004| 102| Alice Lee| 28|Female| 48000|2017-09-30| | 005| 103| Jack Chan| 40| Male| 60000|2013-04-01| | 006| 103| Jill Wong| 32|Female| 52000|2018-07-01| | 007| 101|James Johnson| 42| Male| 70000|2012-03-15| | 008| 102| Kate Kim| 29|Female| 51000|2019-10-01| | 009| 103| Tom Tan| 33| Male| 58000|2016-06-01| | 010| 104| Lisa Lee| 27|Female| 47000|2018-08-01| | 011| 104| David Park| 38| Male| 65000|2015-11-01| | 012| 105| Susan Chen| 31|Female| 54000|2017-02-15| | 013| 106| Brian Kim| 45| Male| 75000|2011-07-01| | 014| 107| Emily Lee| 26|Female| 46000|2019-01-01| | 015| 106| Michael Lee| 37| Male| 63000|2014-09-30| | 016| 107| Kelly Zhang| 30|Female| 49000|2018-04-01| | 017| 105| George Wang| 34| Male| 57000|2016-03-15| | 018| 104| Nancy Liu| 29| | 50000|2017-06-01| | 019| 103| Steven Chen| 36| Male| 62000|2015-08-01| | 020| 102| Grace Kim| 32|Female| 53000|2018-11-01| +-----------+-------------+-------------+---+------+------+----------+
In [ ]:
Copied!